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A Unique Single-Step Algorithm for

Time-Stepping Electromagnetic Fields
Russell F. Bowers

Abstract— A unique algorithm for time-stepping electromag-

netic fields is developed that saves a significant amount of com-

puter resources. It is applied to two-dimensional scattering prob-
lems and can be applied to any type of grid and finite difference

scheme that uses the Yee time-stepping algorithm. The two-step
finite dtierence equations are reduced to a single step which
bypasses many redundant calculations. CPU and memory savings
are presented.

I. INTRODUCTION

T HE majority of finite difference time domain (FDTD)

calculations that are performed in the electromagnetic

community use the Yee, or leapfrog, time-stepping algorithm

[1] using a square or rectangular lattice. It is shown here

how the Yee time-stepping method may be reduced from

two steps to one step. Not only is this method applicable

to rectangular grids, it will be shown how it can be applied

to conformal grids as well. First, equations will be shown

for conformal triangular element grids in two dimensions,

after which rectangular grids are addressed. Computer CPU

improvement over the conventional method is shown for both

types of grids as well as memory savings for two dimensional

problems.

II. ANALYSIS

Since two-dimensional scattering problems are being ad-

dressed, Maxwell’s equations can be decoupled into the two

sets of equations for TM and TE polarizations. To simplify the

discussion, the formulation of the equations will be limited to

TM polarization. TE polarization can be obtained by duality.

To implement Maxwell’s equations on a conforrmd triangular

grid, a combination of the differential and integral forms are

used [2]. For the triangular discretization as in [3] and [4], the

discrete source free equations governing TM polarization are

(2)

The index n is a temporal index; j and k are spatial indices.

The variable S, is the area enclosed by the contour integral
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around Ej. Since the grid is generated in a random fashion,

the IIk fields adjacent to Ej are not necessarily in sequential

order, thus the unusual notation of indices involving i, j and

k in the above equations. The expression k(j, i) means that an

index k corresponds to the ith H field surrounding Ej., and

there are 13 such H fields around Ej, ‘The term r$l~(j,i) is the

path along which Hk(j,i) is constant on the contour integral.
The terms E;l and E;z are the two E fields on each side of
Hk, and $Tj,, is the distance between them.

Since the conformal grid is irregular, the geometrical pa-

rameters of(1) and (2) are not the same for a given set of -j, k.

The most efficient way to handle this in terms of computer

time and memory is to write the equations in matrix form. We

will show later that matrix representation does not adversely

affect computer memory requirements. The matrix form of the

linear equations (1) and (2) is

en =
Ah.–+ + ~.–l (3)

h“+; = Be” + hn–~ (4)

where

and

The elements of A and B are

t$t fm(j,z)
aj,k(j,i) =

@ Sj

and

(5)

(6)

where the index convention is the same as before. The matrix

A contains the boundary conditions for the scatterer and, as

such, is polarization-dependent. The matrix B does not depend

on polarization.

The matrices A and B are very sparse and only the nonzero

elements are stored. The number of nonzero elements, Ij,

of the jtb row of A correspond to the number of discrete

Hk surrounding Ej. The number of nonzero elements of any

row of B is two, because each Hk depends on only two Ej

variables. Given the relationship between the two elements of

each row of B in (6), only one of them needs to be stored.

By employing the matrix product AB, the problem size

can be significantly reduced in terms of computer timti and
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memory. If it is assumed that the initial condition is specified

at t = O by e“ and that all fields at t < 0 are zero, then by

using (4),

h+= B~O (7)

h~=Bel+h*. (8)

Substituting (7) into (8) gives

h; =B(~l+eO). (9)

Continuing on to observe the general form that the equations

take as the nth time step is approached by using the same

type of substitutions,

h~= Be2 + h#
= Be2 + B(el + e“)

—— 13(e2+el+e0).

Finally, employing (3) gives

e3= Ah; + e2

=AB(e2+el+e0)+e2

en = AB(en-l + en-z+en-3 + . . . + e“) + en-l (10)

which has no dependence on hn+ ~ for any n. Using a

shorthand notation of @..- I ~en – 1 = ~~~ol e’ and C = AB,

and substituting into (10),

en = C@en-I + en–l. (11)

The two new terms of (11), ~,~-, and C, have significant

implications. First, ~..- 1 is simply a running sum over time

of all Ej fields in the problem and is easily implemented. It

is true that it is a new term that takes up memory and time

to calculate; however, more memory and time are saved by

eliminating the intermediate calculations for Hk. The nonzero

elements of C are

Cl,m =

}

(@”t)2* ~ # j
– Z:=l ‘J,m “

(12)
C3,J=

where c is the speed of light in free space. Equation (12) states

that the diagonal element is the negative of the sum of all the

off-diagonal elements on the same row.

The lack of hn+ ~ in (11) is because the dependence has

shifted from the surrounding Hk variables to the surrounding

Ej variables plus an additional self term. Thus, the number of

nonzero terms of the jth row of C is only one more (the self

term) than the jth row of A.
In practice, the triangular conformal grid is surrounded by

a rectangular grid [4] for the reason of implementing the

radiation boundary condition, e.g. Liao’s boundary condition

[5]. In a typical problem the ratio of the number of E, in

the triangular grid to the number of Ej in the rectangular

grid is approximately 5%. If we let J’ represent the number

of all nodes, then J % .05Y and K = .05 K’. Since the

matrix C has J rows, then C has 2K + J nonzero elements

compared to 4K nonzero elements of A and B combined. It

TABLE I
MEMORYREQUIREMENTSFOR Two MATRIX AND SINGLE

MATRIX METHODS FOR A TWO-DIMENSIONAL CONFORMAL GRID

Variable array Two matrix method Single matrix method

fiandl? fields 3 J’ J’

$ 0 7’
A 0.2J’ 0.25J’
B O.l J’ (1

Sparse matrix pointers 8.05J’ 4.05J’

Total 11,35J’ 6.3J’

J == .05.J’

TABLE II

MEMORY REQUIREMENTS FOR Two MATRIX AND SINGLE

MATRIX METHODS FOR A TWO-DIMENSIONAL RECTANGULAR Gmo

Variable array Two matrix method Single matrix method

~andfl fields 3 J’ J’

4’ 0 J’
Total 3.71 2J’

is typical that the number of Hk fields in a scattering problem

is approximately twice as many as the Ej fields (K’ = 2J’).

Remembering that only K elements need to be stored for B,

Table I compares the required program array sizes for the two

matrix method and the single matrix method. This table also

includes pointer arrays for making sense of storing a sparse

matrix in a one-dimensional array. It is obvious, from Table

I, that the majority of the savings comes from reducing the

number of pointer arrays needed for the matrices.

This explicit single matrix equation method may be applied

to any type of grid, including rectangular. The application

of this method to a rectangular grid is much easier because

the grid spacing is regular; therefore, all rows of the matrix

have the same nonzero values. Only three coefficients need

to be calculated for all rectangular elements. In particular,

the coefficients are (c &/6z)2 for adjacent fields in the H

direction, (c &t/6g)2for adjacent fields in the ~~ direction

and –2(c &$)2 (1/8~2 + l/6y2) for the self term. The memory

requirement comparison for a two-dimensional rectangular

grid is shown in Table II.

It should be noted that for a three-dimensional rectangular

element problem, there will be no memory savings. The

ronning sum ~~– 1 will take the memory freed up by the

three field vectors being eliminated. For a three-dimensional

conformal grid, the memory savings will only come from

eliminating the need for pointer arrays used to delineate the

H field dependencies.

Since the single matrix approach avoids having to explicitly

calculate all H fields, a significant savings in computer CPU

time should be realized. The timing results of the implemen-

tation of this explicit single matrix equation method compared

to the two matrix method is shown in Table III. The CPU

times are the average cost of updating a single E. This

is obtained by the expression CPU/ (J’ x IV). Conformal

grid as well as rectangular grid performance is shown. Note

that the rectangular element program runs faster than the

conformal element program, because it is a simple program

that does not use complicated array indexing and is “hard-
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TABLE III
CPU TIME vs. MATRIX METHODS ANO Grtm

TVPES ON A SUN SPARC-2 WORKSTATION

Grid ~
JIx N

Two matrix Single matrix

Conformal 8.0 p,s 4.7 ps

Rectarrgnlar 3.6 ~S 1.7 jl,s

coded” for only two shapes of scatterers. The conformal grid

program handles arbitrarily shaped scatterers and, as such, has

more overhead. However, rectangular element solutions cannot

converge quickly enough for scattering phenomena that are

difficult to predict, such as sharp edges and creeping wave

phenomena [4].

It is common that intermediate information needs to be

gathered such as surface currents or levels in the far field.

This information requires knowing the H fields at certain

locations, the number of which is typically far less than the

original number of H fields. They may be quickly and easily

calculated at the selected areas without having to calculate all

of the other H fields.

The use of this single matrix approach does not deteriorate

the accuracy of the calculations. There are no approximations

in going from (3) and (4) to (11). Implementation of material

parameters would simply change the matrix elements of (12);

however, the algorithm would become more complicated if

frequency-dependent materials are used.

III. CONCLUSION

Though there are other single-step methods, this single-step

method for updating time-dependent fields is a worthwhile

contribution to the techniques of FDTD electromagnetic field

calculations. Through application of this method, an efficient

algorithm is produced that makes conformal grid calculations

much more worthwhile while at the same time preserving

the properties of leapfrog time-stepping [1]. Representing the

FDTD equations in matrix form presents a simple method to

estimate the stability condition of a problem [4]. The single

matrix representation also allows for easier portability and

better performance of FDTD problems on parallel computers,

especially ones that have fast vector operations.
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