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A Unique Single-Step Algorithm for
Time-Stepping Electromagnetic Fields

Russell F. Bowers and Chi H. Chan

Abstract— A unique algorithm for time-stepping electromag-
netic fields is developed that saves a significant amount of com-
puter resources. It is applied to two-dimensional scattering prob-
lems and can be applied to any type of grid and finite difference
scheme that uses the Yee time-stepping algorithm. The two-step
finite difference equations are reduced to a single step which
bypasses many redundant calculations. CPU and memory savings
are presented.

I. INTRODUCTION

HE majority of finite difference time domain (FDTD)

calculations that are performed in the electromagnetics
community use the Yee, or leapfrog, time-stepping algorithm
[1] using a square or rectangular lattice. It is shown here
how the Yee time-stepping method may be reduced from
two steps to one step. Not only is this method applicable
to rectangular grids, it will be shown how it can be applied
to conformal grids as well. First, equations will be shown
for conformal triangular element grids in two dimensions,
after which rectangular grids are addressed. Computer CPU
improvement over the conventional method is shown for both
types of grids as well as memory savings for two dimensional
problems.

II. ANALYSIS

Since two-dimensional scattering problems are being ad-
dressed, Maxwell’s equations can be decoupled into the two
sets of equations for TM and TE polarizations. To simplify the
discussion, the formulation of the equations will be limited to
TM polarization. TE polarization can be obtained by duatity.
To implement Maxwell’s equations on a conformal triangular
grid, a combination of the differential and integral forms are
used [2]. For the triangular discretization as in [3] and [4], the
discrete source free equations governing TM polarization are
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The index n is a temporal index; j and % are spatial indices.
The variable S, is the area enclosed by the contour integral
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around F;. Since the grid is generated in a random fashion,
the Hj, fields adjacent to £, ate not necessarily in sequential
order, thus the unusual notation of indices involving ¢, 7 and
k in the above equations. The expression k(j,¢) means that an
index k corresponds to the ith H field surrounding E;. and
there are I, such H fields around E;. The term 6l 4 is the
path along which Hy; 5 is constant on the contour integral.
The terms E7y and ET, are the two E fields on each side of
Hy, and 0r;, is the distance between them.

Since the conformal grid is irregular, the geometrical pa-
rameters of (1) and (2) are not the same for a given set of 7, k.
The most efficient way to handle this in terms of computer
time and memory is to write the equations in matrix form. We
will show later that matrix representation does not adversely
affect computer memory requirements. The matrix form of the
linear equations (1) and (2) is
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The elements of A and B are

ot 6lk('1z)
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and
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where the index convention is the same as before. The matrix
A contains the boundary conditions for the scatterer and, as
such, is polarization-dependent. The matrix B does not depend
on polarization.

The matrices A and B are very sparse and only the nonzero
elements are stored. The number of nonzero elements, I;
of the jth row of A correspond to the number of discrete
H,, surrounding F,. The number of nonzero elements of any
row of B is two, because each Hj, depends on only two E;
variables. Given the relationship between the two elements of
each row of B in (6), only one of them needs to be stored.

By employing the matrix product AB, the problem size
can be signifcantly reduced in terms of computer time and
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memory. If it is assumed that the initial condition is specified
at t = 0 by e and that all fields at ¢ < 0 are zero, then by
using (4),
h
h

Be’ @]
Be' + h3. ®)

[V [PUR ST

Substituting (7) into (8) gives
h? = B(e! +¢). ©)

Continuing on to observe the general form that the equations
take as the nth time step is approached by using the same
type of substitutions,

h® = Be? + h?
— Be? + B(e! + )
= B(e2 +e!+ eO).
Finally, employing (3) gives
e3 = Ah? + e?
= AB(e2 + et +e0) + e?

e"=AB(e" 1 +er e P 4.+l +e™! (10)

which has no dependence on h™*t% for any n. Using a
shorthand notation of g1~ = 37" ¢ and C = AB,
and substituting into (10),

e" = Cihon—1 +e" 1. 11

The two new terms of (11), ¥.»—: and C, have significant
implications. First, 1¢n~1 is simply a running sum over time
of all E; fields in the problem and is easily implemented. It
is true that it is a new term that takes up memory and time
to calculate; however, more memory and time are saved by
eliminating the intermediate calculations for Hy. The nonzero
elements of C are

C’ = C6t)2 8L,.m .
om = O }m # j. (12)
€1y =~ =1 Cim

where c¢ is the speed of light in free space. Equation (12) states
that the diagonal element is the negative of the sum of all the
off-diagonal elements on the same row.

The lack of h™+# in (11) is because the dependence has
shifted from the surrounding Hj variables to the surrounding
E; variables plus an additional self term. Thus, the number of
nonzero terms of the jth row of C is only one more (the self
term) than the jth row of A.

In practice, the triangular conformal grid is surrounded by
a rectangular grid [4] for the reason of implementing the
radiation boundary condition, e.g. Liao’s boundary condition
[5]. In a typical problem the ratio of the number of E, in
the triangular grid to the number of £, in the rectangular
grid is approximately 5%. If we let .J' represent the number
of all nodes, then J ~ .05J' and K ~ .05K’. Since the
matrix C has J rows, then C has 2K + J nonzero elements
compared to 4K nonzero elements of A and B combined. It

TABLE 1
MEMORY REQUIREMENTS FOR Two MATRIX AND SINGLE
MaTRIX METHODS FOR A TWO-DIMENSIONAL CONFORMAL GRID

Variable array Two matrix method Single matrix method

EandH fields 37 T
4 0 J!
A 0.2J! 0.25.J
B 0.1J’ 0
Sparse matrix pointers 8.05J' 4.05.J'
Total 11.35J' 6.3J'
J =057
TABLE II

MEMORY REQUIREMENTS FOR TWO MATRIX AND SINGLE
MATRIX METHODS FOR A TWO-DIMENSIONAL RECTANGULAR GRID

Variable array Two matrix method Single matrix method

EandH fields 37 J!
P 0 J'
Total 3J! 2J'

is typical that the number of Hj, fields in a scattering problem
is approximately twice as many as the £, fields (K’ = 2.J').
Remembering that only K elements need to be stored for B,
Table I compares the required program array sizes for the two
matrix method and the single matrix method. This table also
includes pointer arrays for making sense of storing a sparse
matrix in a one-dimensional array. It is obvious, from Table
I, that the majority of the savings comes from reducing the
number of pointer arrays necded for the matrices.

This explicit single matrix equation method may be applied
to any type of grid, including rectangular. The application
of this method to a rectangular grid is much easier because
the grid spacing is regular; therefore, all rows of the matrix
have the same nonzero values. Only three coefficients need
to be calculated for all rectangular elements. In particular,
the coefficients are (c6t/6z)> for adjacent fields in the +2
direction, (c6t/6y)? for adjacent fields in the £4 direction
and —2(c6t)?(1/6z% 4 1/6y?) for the self term. The memory
requirement comparison for a two-dimensional rectangular
grid is shown in Table II.

It should be noted that for a three-dimensional rectangular
element problem, there will be no memory savings. The
running sum %71 will take the memory freed up by the
three field vectors being eliminated. For a three-dimensional
conformal grid, the memory savings will only come from
eliminating the need for pointer arrays used to delineate the
H field dependencies.

Since the single matrix approach avoids having to explicitly
calculate all H fields, a significant savings in computer CPU
time should be realized. The timing results of the implemen-
tation of this explicit single matrix equation method compared
to the two matrix method is shown in Table III. The CPU
times are the average cost of updating a single F. This
is obtained by the expression CPU/(J’ x N). Conformal
grid as well as rectangular grid performance is shown. Note
that the rectangular element program runs faster than the
conformal element program, because it is a simple program
that does not use complicated array indexing and is “hard-
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TABLE I
CPU Tmve vs. MaTrRiXx METHODS AND GRID
TYPES ON A SUN SPARC-2 WORKSTATION

Grid LPrU.
J'xN
Two matrix Single matrix
Conformal 8.0 us 4.7 pus
Rectangular 3.6 us 1.7 ps

coded” for only two shapes of scatterers. The conformal grid
program handles arbitrarily shaped scatterers and, as such, has
more overhead. However, rectangular element solutions cannot
converge quickly enough for scattering phenomena that are
difficult to predict, such as sharp edges and creeping wave
phenomena [4].

It is common that intermediate information needs to be
gathered such as surface currents or levels in the far field.
This information requires knowing the H fields at certain
locations, the number of which is typically far less than the
original number of H fields. They may be quickly and easily
calculated at the selected areas without having to calculate all
of the other H fields.

The use of this single matrix approach does not deteriorate
the accuracy of the calculations. There are no approximations
in going from (3) and (4) to (11). Implementation of material
parameters would simply change the matrix elements of (12);
however, the algorithm would become more complicated if
frequency-dependent materials are used.

II. CONCLUSION

Though there are other single-step methods, this single-step
method for updating time-dependent fields is a worthwhile
contribution to the techniques of FDTD electromagnetic field
calculations. Through application of this method, an efficient
algorithm is produced that makes conformal grid calculations
much more worthwhile while at the same time preserving

. the properties of leapfrog time-stepping [1]. Representing the

FDTD equations in matrix form presents a simple method to
estimate the stability condition of a problem [4]. The single
matrix representation also allows for easier portability and
better performance of FDTD problems on parallel computers,
especially ones that have fast vector operations.
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